Publication Abstract Display
Type: Published Manuscript
Title: Differential effects of human cytomegalovirus on integrated and unintegrated Human Immunodeficiency Virus sequences.
Authors: Koval V, Jault FM, Pal PG, Moreno TN, Aiken C, Trono D, Spector SA, Spector DH
Contact: Department of Biology, University of California, San Diego, La Jolla 92093-0116.
Year: 1995
Publication: Journal of Virology
Volume: 69 Issue: 3 Pages: 1645-51
Abstract:Human cytomegalovirus (HCMV) has been implicated as a potential cofactor in human immunodeficiency virus type 1 (HIV-1)-related disease. Previously, we reported that HCMV inhibits HIV-1 RNA and protein synthesis in cells productively infected with both viruses but, in transient assays, activates an HIV-1 long terminal repeat-chloramphenicol acetyltransferase (LTR-CAT) construct introduced into the cell by transfection (V. Koval, C. Clark, M. Vaishnav, S. A. Spector, and D. H. Spector, J. Virol. 65:6969-6978, 1991). We show here that HCMV can also activate an infectious proviral HIV-1 genome transiently transfected into a cell. To ascertain whether integration of the HIV-1 provirus plays a role in these differential effects, we generated monoclonal and polyclonal cell lines that each contain a single integrated copy of an HIV-1 LTR-CAT construct and compared the regulatory effects of HCMV and HIV-1 infection in these cells with those occurring in the same type of cell transiently transfected with the HIV-1 LTR-CAT construct. We find that HCMV activates the transfected HIV-1 promoter 230-fold but activates the integrated promoter only 2.8- to 54-fold. In contrast, HIV-1 stimulates the integrated HIV-1 promoter 2,700- to 6,000-fold but stimulates the transfected promoter only 80-fold. Thus, the relative response of the HIV-1 promoter to HCMV and HIV-1 regulatory proteins depends upon whether it is integrated. To determine if HIV-1 gene products are necessary for the HCMV-mediated repression, we constructed cell lines containing two different stably integrated HIV-1 proviruses: one is tat- and nef-minus and transcriptionally inactive, while the other is env- and nef-minus but actively expresses the other HIV-1 gene products. Upon infection with HCMV, HIV-1 antigen production was stimulated from the inactive HIV-1 genome but inhibited from the active genome. We propose that HCMV has two separate effects on HIV-1 replication during a coinfection. One is a slight stimulatory effect which would be undetectable during an active HIV-1 infection, while the other is a net inhibitory effect that is mediated by an interaction between HCMV and HIV-1 gene products.
Funding: NIAID:AI AI28270, NIGMS:GM GM07313
Keywords: Cell Line, Cytomegalovirus, Gene Expression Regulation, Viral, Genes, env, Genes, tat, HIV, Humans, In Vitro, Proviruses, RNA, Messenger, Repetitive Sequences, Nucleic Acid, Research Support, U.S. Gov't, P.H.S., Virus Integration, Virus Replication

return to publications listing